skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tang, Larry"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The field of forensic statistics offers a unique hierarchical data structure in which a population is composed of several subpopulations of sources and a sample is collected from each source. This subpopulation structure creates an additional layer of complexity. Hence, the data has a hierarchical structure in addition to the existence of underlying subpopulations. Finite mixtures are known for modeling heterogeneity; however, previous parameter estimation procedures assume that the data is generated through a simple random sampling process. We propose using a semi‐supervised mixture modeling approach to model the subpopulation structure which leverages the fact that we know the collection of samples came from the same source, yet an unknown subpopulation. A simulation study and a real data analysis based on famous glass datasets and a keystroke dynamic typing data set show that the proposed approach performs better than other approaches that have been used previously in practice. 
    more » « less
  2. Localization of wireless transmitters based on channel state information (CSI) fingerprinting finds widespread use in indoor as well as outdoor scenarios. Fingerprinting localization first builds a database containing CSI with measured location information. One then searches for the most similar CSI in this database to approximate the position of wireless transmitters. In this paper, we investigate the efficacy of locality-sensitive hashing (LSH) to reduce the complexity of the nearest neighbor- search (NNS) required by conventional fingerprinting localization systems. More specifically, we propose a low-complexity and memory efficient LSH function based on the sum-to-one (STOne) transform and use approximate hash matches. We evaluate the accuracy and complexity (in terms of the number of searches and storage requirements) of our approach for line-of-sight (LoS) and non-LoS channels, and we show that LSH enables low-complexity fingerprinting localization with comparable accuracy to methods relying on exact NNS or deep neural networks. 
    more » « less